Serine hydroxymethyltransferase catalyzes the hydrolysis of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate.

نویسندگان

  • P Stover
  • V Schirch
چکیده

The combined activities of rabbit liver cytosolic serine hydroxymethyltransferase and C1-tetrahydrofolate synthase convert tetrahydrofolate and formate to 5-formyltetrahydrofolate. In this reaction C1-tetrahydrofolate synthase converts tetrahydrofolate and formate to 5,10-methenyltetrahydrofolate, which is hydrolyzed to 5-formyltetrahydrofolate by a serine hydroxymethyltransferase-glycine complex. Serine hydroxymethyltransferase, in the presence of glycine, catalyzes the conversion of chemically synthesized 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate with biphasic kinetics. There is a rapid burst of product that has a half-life of formation of 0.4 s followed by a slower phase with a completion time of about 1 h. The substrate for the burst phase of the reaction was shown not to be 5,10-methenyltetrahydrofolate but rather a one-carbon derivative of tetrahydrofolate which exists in the presence of 5,10-methenyltetrahydrofolate. This derivative is stable at pH 7 and is not an intermediate in the hydrolysis of 5,10-methenyltetrahydrofolate to 10-formyltetrahydrofolate by C1-tetrahydrofolate synthase. Cytosolic serine hydroxymethyltransferase catalyzes the hydrolysis of 5,10-methenyltetrahydrofolate pentaglutamate to 5-formyltetrahydrofolate pentaglutamate 15-fold faster than the hydrolysis of the monoglutamate derivative. The pentaglutamate derivative of 5-formyltetrahydrofolate binds tightly to serine hydroxymethyltransferase and dissociates slowly with a half-life of 16 s. Both rabbit liver mitochondrial and Escherichia coli serine hydroxymethyltransferase catalyze the conversion of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate at rates similar to those observed for the cytosolic enzyme. Evidence that this reaction accounts for the in vivo presence of 5-formyltetrahydrofolate is suggested by the observation that mutant strains of E. coli, which lack serine hydroxymethyltransferase activity, do not contain 5-formyltetrahydrofolate, but both these cells, containing an overproducing plasmid of serine hydroxymethyltransferase, and wild-type cells do have measurable amounts of this form of the coenzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning and characterization of mitochondrial 5-formyltetrahydrofolate cycloligase from higher plants.

5-Formyltetrahydrofolate cycloligase (5-FCL) catalyzes the conversion of 5-formyltetrahydrofolate (5-CHO-H(4)PteGlu(n)) to 5,10-methenyltetrahydrofolate and is considered to be the main means whereby 5-CHO-H(4)PteGlu(n) is metabolized in mammals, yeast, and bacteria. 5-CHO-H(4)PteGlu(n) is known to occur in plants and to be highly abundant in leaf mitochondria. Genomics-based approaches identif...

متن کامل

Ontogeny of hepatic enzymes involved in serine- and folate-dependent one-carbon metabolism in rabbits.

Serine occupies a central position in folate-dependent, one-carbon metabolism through 5,10-methylenetetrahydrofolate (MTHF) and 5-formyltetrahydrofolate (FTHF). We characterized the ontogeny of the specific activity of key enzymes involved in serine, 5,10-MTHF, and 5-FTHF metabolism: methenyltetrahydrofolate synthetase (MTHFS), MTHF reductase (MTHFR), the glycine cleavage system (GCS), methioni...

متن کامل

5,10-methenyltetrahydrofolate cyclohydrolase, rat liver and chemically catalysed formation of 5-formyltetrahydrofolate.

The 5,10-methenyltetrahydrofolate (5,10-CH=H4folate) synthetase catalyses the physiologically irreversible formation of 5,10-CH=H4folate from 5-formyltetrahydrofolate (5-HCO-H4folate) and ATP. It is not clear how (or if) 5-HCO-H4folate is formed in vivo. Using a spectrophotometric assay for 5-HCO-H4folate, human recombinant 5,10-CH=H4folate cyclohydrolase, which catalyses the hydrolysis of 5,10...

متن کامل

One-carbon metabolism in plants: characterization of a plastid serine hydroxymethyltransferase.

SHMT (serine hydroxymethyltransferase; EC 2.1.2.1) catalyses reversible hydroxymethyl group transfer from serine to H4PteGlun (tetrahydrofolate), yielding glycine and 5,10-methylenetetrahydrofolate. In plastids, SHMTs are thought to catalytically direct the hydroxymethyl moiety of serine into the metabolic network of H4PteGlun-bound one-carbon units. Genes encoding putative plastid SHMTs were f...

متن کامل

One-carbon metabolism in Neurospora crassa wild-type and in mutants partially deficient in serine hydroxymethyltransferase.

1. The concentrations of folate-dependent enzymes in Neurospora crassa Lindegren A wild type (FGSC no. 853), Ser-l mutant, strain H605a (FGSC no. 118), and for mutant, strain C-24 (FGSC no. 9), were compared during exponential growth on defined minimal media. Both mutants were partially lacking in serine hydroxymethyltransferase, but contained higher concentrations of 10-formyltetrahydrofolate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 265 24  شماره 

صفحات  -

تاریخ انتشار 1990